|
|
 |
|
물리학 실험 - 양자 꿰뚫기 현상
1. 실험 목적
물질은 원자나 분자들로 이루어져 있다. 원자나 분자의 특성이나 이들 사이의 작용에 의해서 물질의 성질이 결정되기 때문에, 물질은 원칙적으로 양자적인 특성을 갖는다. 다만 물질이 갖는 대부분의 특성이 많은 수의 원자, 분자들이 얽혀서 나타내는 평균화된 것이거나, 열 운동에 의해 가려져서 양자적인 특성이 잘 보이지 않을 뿐이다.
전류는 전하의 .. |
|
|
|
|
|
 |
|
DC power supply 설계
목차
1. DC power supply 설계
(1) 반파정류기 동작원리 해석
(2) 리플의 정의와 리플 크기값 유도
(3) 전파정류기 동작원리 해석
(4) 제너다이오드 설명
(5) simulation을 이용한 설계
2. 필요한 부품 규격 결정
3. Transformer, Diode, Capacitor등 제품명, 제조회사명, 정격 등 표시
4. 예상되는 출력 파형 해석
5. Simulation을 통한 결과제시
6. 고찰 및 참고문헌
1.. |
|
|
|
|
|
 |
|
1.실험제목
- 중첩의 원리(law of superposition)
2.실험목표
1) 여러 개의 전원이 있는 선형회로 해석에 흔히 사용되는 중첩의 원리(law of superposition)를 이해하고, 이의 응용능력을 키운다.
2) 중첩의 원리를 실험적으로 증명한다.
3.실험재료
- 디지털 멀티미터, 전원공급기, 100, 220, 330, 470, 1k, 3.3k
4.실험과정 및 결과
1) 그림 2의 회로를 구성하라. 입력 전압과 사용되는 저항은 다음과 .. |
|
|
|
|
|
 |
|
[일반물리학실험] 패러데이 법칙
1. 실험 제목 : 패러데이 법칙
2. 실험 목적 : 전자기 유도에 대한 패러데이 법칙을 살펴보고 1차 코일에 의해 유도된 2차 코일의 전압과 전류를 측정해 보고, 실생활에 응용된 예를 살펴본다.
3. 관련 이론
패러데이는 유도되는 기전력의 크기가 다른 요인들에 영향을 받는지를 연구하였는데 첫째로 그것이 시간에 의존함을 알았다. 자기장의 빨리 변할수록 더 큰 기전.. |
|
|
|
|
|
 |
|
다이오드의 반파, 전파 및 브리지 정류
□ 실험목적
(1) 반파 정류 회로의 출력 파형을 관찰하고 측정한다.
(2) 전파 정류 회로의 출력 파형을 관찰하고 측정한다.
(3) 브리지 정류 회로의 출력 파형을 관찰하고 측정한다.
□ 기본이론
다이오드는 다이오드 양단에 순방향 바이어스에서는 도통되고 역방향 바이어스에서는 회로를 차단하는 성질을 가지고 있다. 다시 말해, 한쪽방향으로만 전류를 흘려주.. |
|
|
|
|
|
 |
|
프랑크-헤르츠 실험
(Franck-Hertz Experiment)
Ⅰ. 실험 목표
네온에 대한 프랑크-헤르츠 곡선을 기록하고 비탄성 충돌에 따른 자유전자의 불연속 에너지 방출을 측정한다.
Ⅱ. 이론적 배경
그림 1. 프랑크-헤르츠 실험장치 회로도
그림 2. 수은(Ag)으로 실험한 결과
미국의 물리학자인 프랑크와 독일의 물리학자인 헤르츠가 1913년 이후 원자의 공명 퍼텐셜(共鳴potential)을 구하기 위하여 실시한 실.. |
|
|
|
|
|
 |
|
본 자료는 공업전문대학교 전기공학, 전자공학과의 전력변환실습 과목 강의에 이용되는 자료로서 사이리스터 단상브리지 정류기/인버터에 대해 상세하게 설명하였으며, 실습에 꼭 필요한 자료임.
1. 실험 목적
2. 관련 이론
가. 사이리스터 단상브리지
나. 두 개의 사이리스터와 두 개의 다이오드를 갖는 브리지 정류기
다. 정류기와 인버터 모드
3. 실험 요약
4. 실험 순서
가. 수동부.. |
|
|
|
|
|
 |
|
에미터 공통 증폭기의 임피던스, 전력 및 위상
●실험제목
에미터 공통 증폭기의 임피던스, 전력 및 위상
●목적
1. 에미터 공통(CE) 증폭기의 입․출력 임피던스를 측정한다.
2. 에미터 공통(CE) 증폭기의 dB 전력이득을 결정한다.
3. 오실로스코프를 이용하여 입․출력 전압의 위상을 관찰한다.
●실험재료
1) 트랜지스터 : 2N6004
2) 저항 : 560Ω, 470Ω, 1㏀, 4.7㏀, 8.2㏀ 1/2W
3) 커패시터 : 25㎌.. |
|
|
|
|
|
 |
|
일반물리학 실험 - 기초회로실험
1.실험제목
-기초회로실험
2.실험목적
-저항체의 양 끝에 걸리는 전압에 따라 이 저항체에 흐르는 전류의 변화를 조사하여, 일반 저항체에 대한 옴의 법칙과 이의 저항 값에 대한 색 코드를 확인하고, 반도체 다이오드의 전기(정류) 특성을 본다. 이를 통하여 물질에 따른 전기특성의 차이를 비교하여 본다.
3.관련이론
.... |
|
|
|
|
|
 |
|
인덕터와 인덕터 회로
실험조건 : (온도) 26°C, (습도) 66%, (날씨) 맑음
1. 실험 목적
1) 인덕터의 작동원리, 기능, 규격, 종류 및 사용방법을 설명할 수 있다.
2) 인덕터에서 전압-전류 관계를 실험으로 보여 줄 수 있다.
3) 인덕터에서의 전기 일률(전력) 및 축척하는 에너지를 실험으로 보여 줄 수 있다.
4) 인덕터-저항 회로에서 시각변수 지수함수인 인덕터 전류 파형과 시정수를 실험으로 보여 줄 .. |
|
|
|
|
|
 |
|
1. 광전효과 이론
빛이 어떤 금속의 표면에 닿을 때 일정의 전기적인 효과가 일어난다는 것은 20세기 초부터 알려져 있었다. 1887년 헤르츠(Hertz)는 전극에 자외선을 조사하면 좀 더 낮은 전압을 걸어주더라도 두 전극들 사이에서 스파크가 일어나는 것을 발견했다.
위의 그림은 광전효과를 관찰할 수 있는 일반적인 실험장치의 도해도이다. 보통 알칼리 금속으로 코팅된 감광을 할 수 있는 금속판이 진.. |
|
|
|
|
|
 |
|
물리학실험 - 전자기 이끎 현상
1. 실험 목적
역사적으로는 전기와 자기 현상은 독립적으로 연구되어 왔고 서로 다른 근원을 갖는 것으로 간주되었다. 그러나 1820년 에르스텟에 의해서 전류가 흐르는 도선 주위에 자기마당이 형성되는 것이 발견되었고, 자연스럽게 그 역 즉, 자기 현상에 의해 전기 현상이 생기는지 여부에 대한 관심이 생겼으며, 마침내 1831년 패러데이에 의해서 존재함이 밝혀졌다. .. |
|
|
|
|
|
 |
|
1. 실험제목
가. 테브난의정리
2. 실험목적
가. 선형 저항성 회로망을 테브낭의 등가회로로 변환한다.
나. 여러 가지 부하저항의 효과를 비교함으로써 테브낭의 등가회로를 확인한다.
3. 관련이론
가. 테브낭정리 정의
복잡한 회로에서 어떤 한 부분의 전류나 전압값만 알고 싶을 경우가 있을 것이다. 그럴 때 테브냉의 정 리를 이용하면 모든 회로를 다 해석할 필요 없이 복잡한 부분은 단순한 등.. |
|
|
|
|
|
 |
|
DMM을 이용한 직류 전압,저항 측정
I. 서론
1) 실험 목적
1. DMM, POWER SUPPLY, Bread board의 사용법을 익힌다.
2. 위의 측정장비를 이용하여 직류 전압, 저항 측정법을 익힌다.
II. 이론적 배경
1.Multimeter의 내부 회로
Multimeter는 밖에서 스위치를 조절함으로써 전류, 전압 혹은 저항을 측정하는 회로로 변환이 가능하고, 또 같은 전류라도 측정 범위를 바꿀 수 있게 되어 있다. 옆의 그림은 .. |
|
|
|
|
|
 |
|
Diode 특성 곡선 및 LED 구동
⒈ 목적
다이오드의 극성에 대해 알아보고 특성곡선을 이해하고 이것에 대한 실험을 하여 알아본다.
2. 이론
반도체의 기본적인 요소. 단자의 한쪽 방향을 애노드(양극), 다른 한쪽 방향을 캐소드(음극)라고 부르며, 전류는 애노드에서 캐소드 방향으로만 흐른다. 이와 같은 성질은 정류 회로 등에 이용된다. 또, 애노드→캐소드로 전류가 흐르는 경우에도 조건이 있어 애노드·.. |
|
|
|
|
|